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SUMMARY 
The focus of this paper is the analysis of spatially two-dimensional non-linear free surface problems. The 
critical aspects of the problem concern the treatment of the non-linear free surface, the body boundary 
condition for large motions and the imposition of suitable radiation conditions. To address such complexi- 
ties, time domain simulation was chosen as the method of analysis. With the use of a finite domain for 
simulation, a major concern is with the radiation condition to be applied at the open or truncation 
boundary. For the two-dimensional problem at hand, no theoretical radiation conditions are known to 
exist. An extension of the Orlanski open boundary condition, based on phase velocity determination at the 
free surface, is proposed. Three categories of problems were analysed using numerical simulation-namely, 
freely moving steep waves, waves over a submerged body and forced body motion. Simulation results have 
been compared with linear theory and experiments. 
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1 .  INTRODUCTION 

The particular hydrodynamic problem of interest here is that of a two-dimensional submerged 
body in close proximity to the free surface subject either to an incident wave or to a forced 
motion. The domain equation for the velocity potential, assuming the fluid to be inviscid and 
incompressible and the flow irrotational, is the Laplace equation which is linear. Non-linearities 
are introduced into the problem through the boundary conditions at the free surface and on the 
body. Distinct from the frequency domain perturbation approach, much effort in recent years has 
gone into treating the free surface and body non-linearities directly in the time domain. 
A comprehensive review of numerical methods in free surface flows is given by Yeung.' 

A new era in non-linear free surface calculations was initiated by Longuet-Higgins and 
Cokelet' in their simulation of unsteady two-dimensional waves. The waves are considered 
spatially periodic and the free surface is mapped into a closed contour. A Fredholm integral 
equation of the first kind is set up for the velocity potential and its normal for marker particles on 
the free surface. Hence at every instant in time the velocity field for each marker particle is known 
through spatial differentiation. This permits the Lagrangian dynamic and kinematic free surface 
conditions to serve as evolution equations for the velocity potential and position for each marker 
particle. This then sets up the boundary value problem for the next instant in time. This method is 
remarkably simple and effective and has the added advantage that the marker particles become 
concentrated near regions of sharp curvature. Vinje and Brevig3 modified the method of Longuet- 
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Higgins and Cokelet and, by using Cauchy’s theorem, forrnulated the problem in terms of a 
Fredholm integral equation of the second kind for the velocity potential and the stream function. 
Subsequently Vinje and Brevig4* ’ analysed a variety of bocly-fluid interaction problems using 
this method. 

2. MATHEMATICAL FORMU LATION 

The problem is posed as an initial value problem concerning the forced motion of a two- 
dimensional body in proximity to the free surface. Exact boundary conditions are to be imposed 
on the free surface and on the body. Figure 1 shows a definition sketch for the problem. The fluid 
domain consists of the free surface, the body, the bottom and two computational or ‘open 
boundaries’. The method of solution to be used is based on a semi-Lagrangian time-stepping 
procedure first used by Longuet-Higgins and Cokelet.’ This procedure permits the satisfaction of 
the non-linear dynamic and kinematic free surface conditions. Vinje and Brevig3 modified this 
procedure for solutions in the physical plane. This modified method will be used as the basic 
technique for the solution of the problem posed above. 

The fluid is assumed to be inviscid and incompressible: and the flow irrotational. In two 
dimensions the velocity potential 4 and the stream function t,b are required to satisfy 

V’4 = 0, V’$ = 0. (1) 

(2) 

The complex potential is defined as 

B(z; t )  = 4(z;  t )  + i$(z; t)., 
where z = x + iy. Due to the analyticity of fl in the fluid domain, Cauchy’s theorem gives 

dz = 0, P 
(3) 

where C is a closed contour (see Figure 2) consisting of the free surface, the open boundaries, the 
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Figure 1. Definition sketch for the problem 
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Figure 2. Closed contour for the problem 
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bottom and (with a branch cut if necessary) the body; zo is a point outside the contour. Letting the 
point zo approach C from the outside, equation (3) yields 

where M is the interior angle of the contour at the point zo. If the contour is smooth at zo, then 

Let the contour C = C, + C,, where q5 is known on C, and t+b is known on C,. Then the real and 
imaginary parts of equation (4) yield Fredholm integral equations of the second kind as follows: 

a= --n. 

at+b(zo; t )  + Re ( lc /J z-zo dz) = 0 

a+(zo; t ,+Re(ijc L d z ) = o  z-zo 

for zo on C, and 

for zo on C,. 

Boundary conditions 

Free surface (C, boundary). Exact (non-linear) free surface conditions are satisfied by using 
Lagrangian marker particles on the free surface. The positions of the fluid particles a t  the free 
surface are integrated in time from the kinematic free surface condition 

(64  Dz/Dt = u + iu = w*, 

w = u -iv = ap/az. 
where w* is the complex conjugate of the complex velocity 

The velocity potential on the free surface (which would become a boundary condition for the 
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boundary value problem at the next time step) at the position of the marker particles is found by 
integrating the Lagrangian form of the dynamic free surfac’e condition2 

D4/Dt = ~ W W *  - gy - ps/p, (W 
where D/Dt is the material derivative, g is the gravitational constant, y is the free surface 
elevation, p is the fluid density and ps is any externally applied pressure distribution on the free 
surface (usually taken as zero). 

Bottom (C$ boundary). The bottom boundary condition is 

a+/an = 0. (74  

t+b = constant (7b) 

This may be satisfied by setting 

and, in particular, this constant is chosen as zero. 
Body (C ,  boundary). The kinematic body boundary condition is 

and 

Y = v,) + hk x R, 

where v is the rigid body velocity at the body boundary and n is the body normal. Vinje and 
Brevig4 show that the stream function can be integrated from equation (8a) to give 

w, y; t )  = Uo(Y -Yo)  - uo(x - x o k  +h IR 1 2 ,  (84 

where (uo, uo)  are the components of sway and heave velocities, (xo, y o )  represent the centre of roll 
of the body, ci, is the angular velocity and R is the position vector from the body boundary to the 
centre of the roll. 

Thus if the forced motion of the body uo(t), uo(t), ci,(t) is known, the stream function value on the 
body boundary is available at all instants of time. The partial time derivative of the stream 
function at the body (which is needed for the determination of the pressures on the body) is 
available as 

at+b(x, y; tyat =(y--yo)tio - (X --Xo)dO -+iRl2&+ uo4,- uo4x 
+ “UO - 4x)(x -xo) +(uo - 4J(Y -Yo)lci ,  ( 84  

Open boundaries. The most difficult part in the solution of two-dimensional non-linear flow 
problems is the treatment of the open boundaries where a radiation condition needs to be applied. 
In the time domain, for an initial value problem, a radiation condition is actually not necessary. 
A sufficient condition is to state that in the far field the disturbance is negligibly small. The 
implementation of such a condition is not practical (except for cases of non-propagative solutions 
at infinity using mapping techniques), for there would have to be a progressive domain expansion 
with time, leading to unreasonable computational costs. This consideration then implies the use 
of a truncated domain using ‘open boundaries’. Thus the advantage of an initial value formu- 
lation is not available and suitable radiation conditions need to be furnished at these open 
boundaries. To solve the boundary value problem given bq Fredholm integral equations (5a) and 
(5b), either the velocity potential I$ or the stream function t+b should be known at the open 
boundary at each instant in time. 
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Determination of forces 

dynamic pressure is given as 
The forces on the body are determined by integrating the pressure around the body. The 

pip = a+/at - + ww*. (9) 
Hence the values of &$/at have to be known on the body. This could be done either with 
backward differencing of the velocity potential with respect to time or a separate boundary value 
problem may be formulated for the analytic function ap/at. This latter approach has been used, 
since the backward differencing scheme was found by this author and by Vinje and Brevig4 to be 
numerically unstable. 

The analyticity of the function dj?/at yields from Cauchy's theorem 

jcz dz=O 

for zo outside the contour C .  The contour C consists of C,t where aCp/dt is known and C ,  where 
a$/at is known and hence equation (loa) can be written as 

a-(.zo;t)+Re( a* lc-dz)=O ap/at 
at z-zo 

for zo on C,t and 

84 a m  
at z-zo CI- (zo; t)+ Re ( i I  ~ dz) = O  

for zo on &. 
The free surface is part of C,t from the Eulerian dynamic free surface condition derivable from 

equation (6b). The bottom is part of C,t since it satisfies the condition $[ =O. The body boundary 
is part of C,t since $[ is known on the body from equation (8d). Once again for the boundary 
value problem for ap/at to be well posed, either Cpt or $, should be known on the open boundaries. 

A note on the method of solution 

The boundary value problem for 4 and $ in terms of equations (5a) and (5b) yields Fredholm 
integral equations of the second kind. If the contour C is defined as C = C ,  + C,n where 4 is 
known on C, and Cp, is known on C,,, then Green's theorem gives 

Equation (11) is the solution for a boundary value problem given either 4 or 4" on C and is a 
Fredholm integral equation of the first kind. Vinje and Brevig3* state in the literature that the 
formulation based on 4 and $ is more stable because of the generally better characteristics of 
Fredholm integral equations of the second kind. It has been suggested that this accounts for the 
instability in the work of Longuet-Higgins and Cokelet.2 However, it can be easily shown that 
equation (1 1) is derivable directly from equation (4) as follows: 

p(zo) = dz. 
z-zo 
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Let z - zo = reis, r = I z - zo) and 8 = arg (z  - zo). Hence 

dz dr . 
___ = - + 1d8; 
z-zo r 

i.e. 

(b(zo)+i$= ${c[((b(z)+i$)el 7C1 +idR)]. 

Taking the real part of equation (13), 

Now j (bdO= j: (b-(Is= - { : n  (b-logrds, 

which follows from the Cauchy-Rieman equations for the analytic function log ( z  - zo). Also 

since [$logr] equals zero over a closed contour. Substituting equations (15) and (16) into 
equation (14), we get 

for a field point P (xo, yo). 
Thus equation (1 1) has been derived from equation (4) simply by using the Cauchy-Rieman 

equations. Hence equation (Il), which is a Fredholm integral equation of the first kind, and 
equation (5),  which is a Fredholm integral equation of the second kind, are both derived from 
equation (4). Equation (5) works with the velocity potential (b and the stream function $, while 
equation (1 1) works with the velocity potential (b and its normal a+/an. The physical problem and 
the implementation of boundary conditions are identical. It is therefore difficult to see why 
equation (1 1) is any less stable than equation (5) as noted by Vinje and B r e ~ i g . ~  The instability 
observed in the work of Longuet-Higgins and Cokelet2 is probably numerical. 

Taking the imaginary part of equation (13) and using the C-R equations, one gets a 
formulation based on the stream function: 

3. EXTENSION OF THE ORLANSKi CONDITION 

It is often necessary to introduce artificial boundaries 1.0 limit the domain of computation. 
Boundary conditions are then needed at  these artificial boundaries to ensure a unique solution. 
Moreover, the boundary conditions should be such that the solution so obtained will closely 
approximate the solution that would exist in the absence of the artificial boundary; i.e. the open 
boundary conditions should not distort the solution in the interior domain. The formulation of 
appropriate open boundary conditions has received much attention in the literature and a review 
of the various approaches is given by Jagannathan.6 
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For many physical problems the appropriate partial differential equation is hyperbolic in 
nature and the phenomena are characterized by wave propagation. Open boundary conditions 
for such problems are naturally based on the idea of wave absorption. For a time harmonic 
problem given by 4 = $e-i"f (where $is complex), the appropriate boundary condition is the well 
known Sommerfeld condition' 

for two dimensions and k is the wave number corresponding to the frequency v.  In the time 
domain, if the solution is expected in the form 4(x, y, t )  = 4(x -c t ,  y), where c is the phase velocity, 
then the Sommerfeld condition above may be written as 

cb,Tik+O as x++_co (19) 

4[ + c 4 x  = 0. 

This condition applied numerically is often known as the Orlanski condition. 
In many problems the value of the phase velocity to be used is not known. Kreiss6 dealt with 

the problem of unknown phase velocity by assuming c= Ax/At, where Ax and At are the spatial 
and temporal grid sizes. Pearson' obtained the phase velocity from the linearized dispersion 
relationship using only the dominant wave. Orlanski" suggested that the phase velocity, instead 
of being a constant value, should be numerically determined from neighbouring grid points. 

The Orlanski condition in a non-dissipative neutrally stable form has been used by Chan." 
Camerlengo and O'Brien'' used the Orlanski scheme with minor modifications and concluded 
that while the modified scheme worked for some cases (free Kelvin waves), there was some 
reflection for other cases (forced Rosby waves). Han et ul.I3 used a forward-time, upwind-space 
variation of the Orlanski condition for application to stratified flows. They concluded that the 
open boundary condition performed remarkably well, even for these parabolic problems. 
Ertekin14 used the Sommerfeld condition directly to study the behaviour of long waves by using 
c = f J(gh,) ,  where h, is the water depth. 

An extension to the Orlanski scheme is now proposed. In initial value and unsteady flow 
problems the critical question is the value of the phase velocity to be used. With particular 
reference to the problem posed in Section 2, the outgoing behaviour of the velocity potential at 
the open boundaries is directly related to the free surface behaviour near those boundaries. We 
then postulate the following: 

(a) The value of the phase velocity at the open boundaries is the value of the phase velocity on 

(b) The value of the phase velocity c at the free surface may be determined at any instant as 
the free surface near those boundaries. 

The Orlanski condition is implemented in the simulation as follows. Consider a point on the 
free surface close to the open boundary. At some time t = to let the complex potential /3 = 4 + i$ 
and the value be known at this point. The value of u = 4 ,  is obtained by numerical 
differentiation with neighbouring free surface points. Hence, using equation (21), the value of the 
phase velocity c is obtained. Now at a point on the open boundary 4x is obtained by spatial 
differentiation and hence, using equation (20), the value of 4t and by integration the value 4 are 
obtained. With this known value of 4 on the open boundary and using the free surface, bottom 
and body boundary conditions, the boundary value problem is solved to obtain $ on the open 
boundary. For the next instant in time the free surface condition gives a new value of 4f and /3 on 
the free surface and the process continues. 

4x+0. To avoid this problem and 
to get a robust estimate of c,  a 'numerical scanner' was implemented in the procedure. This 

However, there could be problems in estimating c when 
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scanner merely computes c according to equation (21) at several points close to the open 
boundary but ignoring points where ( p t ,  (p,-+O. The average phase velocity c is then obtained and 
used for the open boundary condition in equation (20). 

This approach to the implementation of an Orlanski boundary condition was tested using a 
small-amplitude progressive free surface wave of period 27t in a water depth of 101.16 ft. At time 
t = O  the wave configuration and its velocity potential were taken as initial conditions. The 
simulation was carried out with the Orlanski open boundary condition implemented at the port 
and starboard boundaries and it was found that this progressive wave could be simulated without 
distortion. Figure 3 shows the values of the phase velocity obtained using equation (21) at free 
surface nodes 1, 8, 15, 23, 30, 37, 45 and 50 at three instants in time. It is to be noted that the 
numerically determined phase velocities over the length of the wave are quite close to the 
theoretical value of 32.2 ft s-' .  

The stability characteristics of the present approach for determination of the phase velocity will 
differ from that of Orlanski" who specified an upper bound as follows: 

c = Ax/At if - ( p t / ( p x  > A:s/At, (22) 

where Ax is the spatial grid size and At is the time step. Orlanski" enforced this bound since both 
(p, and (pX were determined through numerical differentiation. In the present approach (px is 
determined through numerical differentiation but (pt is obtained from the dynamic free surface 
condition. Noting that 

D(p/Dt = @ t  + WW* (23) 
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Figure 3. Phase velocity determination using the extended Orlanski condition for a small-amplitude progressive wave 
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and using equations (6b) and (21), we get 

Thus the 
velocity at a 

tww" + gy + P,/p 
4 x  

c =  

temporal grid size does not appear explicitly in the determination of the phase 
given instant in time. This implementation of the Orlanski condition has been used 

for the case of a submerged body executing forced oscillation close to the free surface and the 
results are given in the next section. 

4. RESULTS AND DISCUSSION 

Freely moving steep waves 

The behaviour of a freely moving steep wave investigated by McIver and Peregrine" is 
analysed to determine the characteristics of the simulation process. The wave is considered 
spatially periodic at every wavelength and is imposed with an initial steepness that forces it to 
plunge within one period. Figure 4 shows the evolution of the wave using a four-stage non- 
iterative Adam's predictor-corrector method16 for integration over time. Figure 5 shows energy 
and momentum checks. It is seen from Figure 5 that there is a slow but steady loss of energy and 
momentum from the system. This arises from the presence of artificial vi~cosi ty '~ induced into the 
system by the use of numerical (and hence approximate) space and time derivatives. The same 
wave was simulated using a fourth-order Runge-Kutta procedure16 for the entire process. The 
variation of energy and momentum for the Runge-Kutta method is given in Figure 6, while 
Figure 7 shows a comparison of wave profiles for the two methods at one instant in time. It is 
noted that dissipation of energy is less for this procedure compared with the Adam's method. It is 
hypothesized by the author that this is related to the Adam's method using spatial derivatives of 
three lagging time steps and thus accumulating errors whereas the Runge-Kutta method is self- 
starting at each time step. 

N U W E R X C A L  S X M U L A T I O N  OF BREAKING W A V E S  1 .o 
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3 
W A V E  LENQTH w 

-I 
w -0.6 

a 
3 -1.0 

w > 

-8.0 -4.0 -2.0 0.0 2.0 4.0 

X A X I S  

Figure 4. Behaviour of the freely moving steep wave analysed by McIver and Peregrine" 
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Figure 5. Energy and momentum checks with simulation using Adam's predictor-corrector method 
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Figure 6. Energy and momentum checks with simulation using Runge-Kutta method 

Waves over a submerged body 

This subsection deals with two aspects. The first part is a comparison of the results of 
simulation with linear theory and experimental data for waves of very small steepness passing a 
submerged cylinder. This serves to assess the nature and effectiveness of the simulation procedure. 
The second part deals with the case of extreme waves over a submerged cylinder and a 
comparison with linear theory predictions is provided. In both cases the axis of the cylinder is 
parallel to the wave crests and spatial periodicity is imposed as the open boundary condition. 



NON-LINEAR FREE SURFACE FLOWS 1061 

1.0 

0 . 5  
z 
+ 
> 
-1 
W 

E 
a 
w 0 . 0  

W > 
$ - 0 . 5  

- 1 . 0  

RUNGE-KUTTA METHOD 
0 ADAM’S P I C  METHOD 

-4.0 -2 .0  0 . 0  2 . 0  -6 .0  

X A X I S  

Figure 7. Comparison of wave profiles at t=0,51T for simulation using Adam’s and Runge-Kutta methods 

Two numerical experiments were conducted for the case of small-steepness waves incident 
upon a submerged 0.36 m (14 inch) long cylinder of radius 010 m (0.33’) in water of depth 1.60 m 
(5.25’). The comparison is with the theoretical results of Ogilvie18 and the experimental work of 
Chiulg. The results of Ogilvie are for first-order forces and the second-order steady force (which 
depends only on the first-order potential) and are available as a convergent infinite series. The 
force function (following Chiu) is defined as 

Force function = Force/(2npgAi / k ) ,  (26 1 
where Ai is the incident wave amplitude and k is the wave number. 

Note: In the results that follow in Figures 10, 12 and 13 some room for confusion exists, since 
time-variant and non-time-variant quantities are shown. For the experimental results only the 
first-order amplitude and the ‘steady’ (not time-variant) second-order drift force are available 
and these have been shown as constants. The theoretical results of Ogilvie are shown as total 
time-variant force (linear first-order time-variant force superposed on a steady second-order drift 
force). The theoretical steady second-order drift force is also shown (as a constant value). The 
basis for comparison is therefore the shape of the time-variant force curves from simulation and 
theory and the total amplitude over one cycle for simulation, theory and experiment. 

The first case deals with the centre of the cylinder submerged at 0.13 m (0.425’) subjected to a 
wave of period 1.432 s and amplitude 0.01 m (0.038’). Figure 8 shows the horizontal and vertical 
simulation forces. The phase angle between horizontal and vertical forces is more than the 
theoretical value of 90”. The vertical force appears to be less completely periodic than the 
horizontal force. Figures 9 and 10 show the comparisons of horizontal and vertical forces for 
simulation, theory and experiment. In both cases simulation compares better with theory than 
with experiment. The simulation is out of phase w.r.t. theory (due to the formulation as an initial 
value problem where at t = O -  there was no cylinder and no diffraction) but catches up with 
theory as time progresses. For apparently the same reason, simulation under-predicts the vertical 
force initially but is fairly accurate at the end of one period. 
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Figure 8. Vertical and horizontal forces from simulation for cylind(er of radius 0 3 3 '  at submergence 0.425' 

Figure 

-0.86+ 

9. Comparison of horizontal forces from simula~tion, theory and experiment 

The next case deals with the cylinder submerged to 020 rn (0.667') subjected to a wave of period 
0904 s and amplitude 0.01 m (0.040). Figure 11 shows the vertical and horizontal simulation 
forces for this problem. Here the phase between vertical and horizontal forces is almost exactly 
90" as predicted by linear theory. The vertical force amplitude is slightly higher than the 
horizontal force amplitude, as is also seen in Chiu's experiment, although linear theory predicts 
equal amplitudes. The sinusoidal response of the simulation forces is quite remarkable con- 
sidering that it has been solved as an initial value problem. It is to be noted that the amplitudes of 
the second cycle are smaller than the first. This is because f.he computational domain was limited 
to one wavelength (to reduce computational costs) and space periodicity was used as the open 
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Figure 10. Comparison of vertical forces from simulation, theory and experiment 
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Figure 11. Vertical and horizontal forces from simulation for cylinder of radius 0.33' at submergence 0.67' 

boundary condition. Space periodic open boundary conditions lead to mathematically well posed 
boundary value problems and have been used by Longuet-Higgins and Cokelet2 and Vinje and 
B r e ~ i g . ~  They do not constitute physically correct open boundary conditions as they imply that 
the problem is continued in a periodic sense to infinity in both directions. However, these 
boundary conditions are easy to use and give acceptable results when the open boundaries are 
situated far enough from the disturbance in the computational domain. Figures 12 and 13 show 
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Figure 12. Comparison of horizontal forces from simulation, theory and experiment 
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Figure 13. Comparison of vertical forces from simulation, theory and experiment 

comparisons of horizontal and vertical forces for simulation, experiment and theory. All three 
compare very well with each other, with the experimental value falling in between the simulation 
and theoretical values. There is almost no phase difference between the simulation and theoretical 
force components. In general force computations from simulation compare very well with results 
from experiment and theory. The agreement between simulation, theory and experiment is 
particularly good at deeper submergence. This leads to the consideration that certain anomalous 



NON-LINEAR FREE SURFACE FLOWS 1065 

0 - 1 0  -- 
P 

d 
w --98 
a = -40 -- 

2 -20 

> 

-60 -- 
--be i 

behaviour (for instance the vertical force for the first case) predicted by simulation for shallow 
submergence may actually exist but is not predicted by linear theory. 

We next consider the case of a steep wave passing a submerged stationary circular cylinder. The 
cylinder has a diameter of 10 rn and the water depth is 60 m. The wave is of length 110 m and the 
amplitude is 10 m, giving a steepness of 0.182. If this wave were time-stepped without the body in 
flow, it would become a plunging breaker in about five seconds. Figure 14 shows the wave passing 
over the cylinder placed 20 m below the undisturbed free surface. It is noticed that the cylinder 
serves to accelerate the breaking process and the wave now spills over in around three seconds. A 
comparison of hydrodynamic pressure profiles around the cylinder for the cases of non-linear 
simulation and linear theory without diffraction showed that the pressures at the bottom half of 
the cylinder are still well predicted by linear theory, while for the upper half linear theory 
underestimates quite significantly. To clarify the effect of cylinder proximity to the free surface, 
the same wave was re-run with the cylinder placed 40 m below the free surface. A comparison of 
pressure profiles for this case showed that the peak dynamic pressure ratio of the simulation value 
to the linear theory value is smaller for this case, indicating that pressure attenuation is faster for 
non-linear simulation than for linear theory. 

We next turn our attention to a comparison of non-linear forces with the inertial force 
component of Morison's equation. The context of such a comparison is that, given the diameter 
to wavelength ratio for this problem, the typical offshore industry practice would be to use 
Morison's equation to determine the force rather than linear diffraction theory. The drag force, 
being of viscous origin, is not considered and the focus is on the inertial force term. Figure 15 is a 
plot of the non-linear horizontal force compared with the linear Morison inertial force with 
various inertia coefficient (C,) values. It is seen that the peak force is best approximated for a C, 
value of 2.5. Noting that the theoretical asymptote for C, is 2.0, this implies that the linear wave 
theory severely underestimates the local acceleration. Figure 16 shows a similar comparison for 
the vertical hydrodynamic force. In this case the C, value required using linear wave theory to 
predict the peak force is about 3.2. Thus it appears that the vertical force is affected more than the 
horizontal force by the effects on free surface non-linearity and cylinder proximity to the free 
surface. 
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Figure 14. Steep wave of amplitude 10 m and wavelength 110 m passing a cylinder of radius 10 m at submergence 20 m 
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Figure 16. Comparison of vertical forces from simulation and Morison’s equation (inertial term) 

Forced body motion 

This subsection deals with the radiation problem caused by the forced motion of a body. Of 
particular interest is the behaviour of the open boundary condition based on the extension of the 
Orlanski condition. The body was taken as a circular cylinder of radius 030 m (1.0’) submerged 
with its axis horizontal to a depth of (0.4 m) ( 1 a . 3 ’ )  at its centre. The bottom was taken as uniformly 
flat at a depth of 1.60 m (5.25’) and the body was oscillated sinusoidally in heave at a frequency of 
6.261 rad s-  l .  Both the open boundaries were considered and were located at a distance of 2.39 m 
(7.5’) from the body. 
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Figures 17 and 18 show the values of the numerically determined phase velocities near the port 
and starboard open boundaries. Initially the phase velocities are high, corresponding to long 
waves generated as the body moves from rest. The numerical phase velocities converge to the 
linear steady-state value after about two periods of oscillation. Figure 19 shows four free surface 
profiles about one period apart. Figure 20 provides a comparison of the vertical force on the body 
obtained by simulation and the linear theory of Ogilvie.” The two compare very well and the 
simulation value reaches steady state after about two oscillations. 

8 4  c 
0 1 2 5 4 6 

TIHE 

Figure 17. Phase velocity using the extended Orlanski boundary condition at the port (left-hand side) boundary for 
forced body motion problem 
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Figure 18. Phase velocity using the extended Orlanski condition at the starboard (right-hand side) boundary 



1068 S. JAGANNATHAN 

CAPPROXXMATELY ONE P E R I O D  APART> 

s s  
w 

g 0  
E: 

8 

. 2.6  
m 
v 

I- -2.6 

d -6 
2" 

-7 .6 

- 1 0  -: 

X - A X I S  
-7 .6  -6 -2.6 a 2.6 1.6 

Figure 19. Free surface elevations for the forced body motion problem 
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Figure 20. Comparison of vertical forces from simulation and frequency domain theory 

5. CONCLUSIONS 

Three categories of spatially two-dimensional free surface problems have been analysed in this 
paper-namely, freely moving steep waves, waves over a submerged body and forced body 
motion. The main complexities of these problems are the prloper treatment of the non-linear free 
surface conditions, the body boundary condition for large motions and the radiation or open 
boundary condition. It has been shown here that the simulation method imbedded in a boundary 
integral formulation is very suitable for the analysis of these problems. Yeung' shows that for 
two-dimensional problems the boundary integral formulation is computationally less intensive 
than the finite element or finite difference methods. Other problems which could be successfully 
analysed using this method are waves breaking against a breakwater, large motions of tanks 
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containing a fluid, roll motions of a ship, non-linear forces on offshore structures, etc. The 
extension of this method to three-dimensional problems is straightforward, although computa- 
tionally intensive. 

Of particular current interest is the treatment of the open boundary condition. For linear 
problems this is the radiation condition which is well known. For non-linear problems no general 
open boundary conditions are known so far. Many individual approaches have emerged, such 
as those of Hedstrom” for non-linear hyperbolic systems, Rudy and Strikwerda” for 
Navier-Stokes flows and Enquist and Majda” for a general class of wave equations. In this paper 
an extension of the Orlanski scheme has been proposed and verified for the case of a freely moving 
gravity wave and an oscillating body. This condition appears quite non-reflective and is probably 
satisfactory for many practical applications. A more theoretical approach to the non-linear open 
boundary condition problem has been proposed by Jagannathan.6 It should be noted that for 
many three-dimensional problems the open boundary condition may be linearized based on the 
consideration of energy dissipation. In contrast, with two-dimensional non-linear problems there 
is no energy dissipation with distance and hence in principle the open boundary condition at any 
distance from the disturbance remains non-linear. 
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APPENDIX: NOTATION 

incident wave amplitude 
contour for the boundary value problem 
phase velocity 
acceleration due to gravity 

unit vector normal to x-y plane 
wave number 
generic points on the contour C 
pressure 
pressure vat the free surface 
polar radius 
position vector 
velocity component in the x-direction 
sway velocity of the body 
velocity component in the y-direction 
heave velocity of the body 
complex velocity u - iv 
Cartesian co-ordinates 
location of the centre of roll of the body 
point in the complex plane defined as z=x+iy  
included angle 
complex potential defined as f l=  4 + i$ 

J-1 
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angle in polar co-ordinates 
roll angle, roll velocity, roll acceleration 
harmonic frequency 
density of fluid 
velocity potential 
velocity along direction n 
stream function 
part of contour C where velocity potential 8 is known 
part of contour C where stream function $ is known 
part of contour C where 4,, is known 
denotes complex conjugate 
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